

超高分子量PCSを用いる先進PIP法による SiC/SiCの緻密化

アート科学 長谷川 良雄 原子力機構 田口 富嗣

目的

原子力関連材料:燃料被覆管、核融合炉用構造材料
 宇宙材料:セラミックス系スラスタ、熱防御システム
 対環境材料:超耐酸化性炭素系複合材料

耐熱構造材料:自動車関連材料

従来のCMC製造方法	繊維へのダメージ	純度	気孔率	コスト
化学気相浸透法	Ø	Ø	×	×
反応焼結法	Δ	0	Ø	×
ホットプレス法 $ ightarrow$ NITE法*	$X \rightarrow \bigcirc$	×	Ø	×
ポリマー含浸焼成法(PIP法)	Ø	$X \rightarrow O$	$X \rightarrow O$	Ø

* NITE (Nano-powder Infiltration and Transient Eutectic-phase)法

PIP法の最重要課題:緻密化

先進PIP 法

■ 気孔率く10%で複雑形状に対応できる低コストなSiC/SiCの提供 ■強度の向上、熱伝導率制御、新インターフェイズの実現

<u>先進PIP (APIP: Advanced Polymer Infiltration and Pyrolysis)法</u>

APIP法 <u>APIP法のコンセプト</u> 全ての原料がPCS由来 β-SiCナノ粒子/CNF SiC繊維 さらに (超)高分子量PCS/キシレン 成形 超高分子量PCSナノ粒子 SiCナノ粒子やCNFの 成形 プロセス 利用による緻密化、高 SiC繊維プリフォーム 純度化、強度の向上、 超高分子量 高熱伝導率化 含浸 PCS/キシレン 乾燥 本研究では (100/100-1.0) - (1000/100-1.0)Ar/500 ■ CNFの緻密化効果 焼成 緻密化 不融性PCSナノ粒子 プロセス の自己焼結によるプ 低密度成形体 リォーム形成 CNF、不融性PCSナノ ■溶融Si 含浸 粒子による新インター フェイズの形成 反応焼結法の導入 緻密成形体

ポリカルボシラン(Polycarbosilane)

<u>不融性超高分子量ポリカルボシラン(PCS-UUH)の調製</u>

<u>PCS-UUHナノ粒子の調製</u>

(S. Ishihara, T. Nishimura, and H. Tanaka, "Fine polycarbosilane particles for precursors of silicon carbide ceramics synthesized by precipitation processing in solvents", The Fifth World Congress on Particle Technology, 2006)

<u>SiC焼結体(マトリックスSiC)の作製</u>

<u>SiC/SiC製造プロセス</u>

APIP(T-1) APIP(フィラー成形法) <u>成型</u> \Box <u>乾燥</u> \square グリーンボディ \square <u>焼成</u> □ Porous 10. 200 Composites \square <u> PIP</u> \square Dense Composites

<u>1D、2D-SiC/SiCの特性</u>

Sample	SiC fiber	Binder	APIP		t/cm	V.	n	σ/MPa	備老
			PCS	PIP/times	0/0111	• f	Р	0 / WI a	
1D-SiC/SiC (V _f =0.2)	HNL	PCS-UH	PCS- UUH	18	0.126	0.201	0.043	—	
1D-SiC/SiC (V _f =0.4)	HNL			12	0.122	0.414	0.100	_	
2D-SiC/SiC (V _f =0.4)	HNL-S			6	0.188	0.377	0.132	448	T-1
		PCS-UH + CNF			0.198	0.377	0.136	383	T-2
	HNL	PCS-UUH nanopowder			0.111	0.404	0.146	198	T-3
		PCS-UUH nanopowder + CNF			~0.1	~0.4	0.137	123	T-4
							0.114	181	T-5
							0.128	151	T-6

<u>1D-SiC/SiCの作製</u>

フィラー(CNF)成形法SiC/SiC複合材料の作製

*含浸:PCS-UUH 60% xylene 溶液

フィラー(CNF)成形法SiC/SiC複合材料の断面SEM観察結果

T-1(CNF無添加)

HNL-S5枚朱子織(CNF塗布前)

T-2(CNF添加)

CNF塗布後

T-1(CNF無添加) SiC繊維束内部及び表面近傍にのみマトリックスが生成

SiC繊維バンドルがない部分は、気孔

3点曲げ試験結果

T1 (CNF無添加)

T2 (CNF添加)

ポリカルボシランの熱分解プロセスでのインターフェイズの生成

PCS-UUH ナノ粉末をバインダーとするSiC/SiCの作製

PCS-UUHの溶融状態を経ない自己焼結過程を利用する

PCS-UUHは溶融状態を経ることなく1000℃でセラミック化するが、分子間縮合でSi-Cセラミックスナノ粒子間にネットワークを形成し焼結する。

フィラー(PCS-UUHナノ粉末)成形法SiC/SiC複合材料の作製

T-3:織布の片面にPCS-UUHナノ粉末を織布の片面に塗布 T-4:織布の片面にCNFを塗布後PCS-UUHナノ粉末を塗布 T-5:織布の片面にCNFとPCS-UUHナノ粉末混合物を塗布 T-6:織布の両面にCNFとPCS-UUHナノ粉末混合物を塗布

フィラー(PCS-UUHナノ粉末)成形法SiC/SiC複合材料の断面SEM観察結果

3点曲げ試験結果

まとめ

■ APIPで気孔率は従来のPIP法の1/2

フィラー成形法によるマクロポアの消滅を実現し緻密化SiC/SiCの実現性を確認
 不融性PCSナノ粒子の自己焼結を利用したプリフォーム形成に成功
 不融性PCSナノ粒子の熱分解によるインターフェイズのその場形成を示唆

光 (触媒) 反応法

PCS/Hexane + TiO₂ nanosheet $\xrightarrow{h\nu}$ 高分子量PCS >90%

光触媒処理時間とセラミックス収率、Si-CセラミックスのL111

